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An interesting puzzle about current Al systems

The following two statements are both true at the same time:

1. LLMs have achieved superhuman (or 2. LLMs can fail in unpredictable ways
better-than-most-human) abilities in compared to how humans would fail
very challenging tasks
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What are the reasons behind this inconsistency?



A classic critique from cognitive science

Over thirty years ago, Fodor and Pylyshyn? (1988) argued that neural networks differ fundamentally from
human minds because they lack systematicity + other linked properties.

Systematicity: The understanding of certain mental representations is structurally related to the
understanding of associated ones. If you can think "John loves Mary," you can necessarily think
"Mary loves John."

Productivity: The capacity to generate and understand an indefinite number of novel
representations from a finite base.

Compositionality: complex representations are built from simpler constituents in rule-governed
ways, and the meaning of the whole depends systematically on the meanings of the parts.

2 Fodor, J. A., & Plyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition.



Which Al systems are systematic?

Fodor and Pylyshyn’s idea of systematicity is easily instantiated in classic rule-based models that perform
symbol manipulation.

- they have explicit symbols for LOVES, John, and Mary and can combine them freely

What about SOTA LLMs?

Anecdotally:

IF a Al system can solve IMO problems but fails at understanding the “greater-than” relation, THEN it is not
systematic in its understanding of the mathematical domain.

More in general, for widely used models, not systematic because:

e Do not encode explicit rules
e Even if a neural configuration that can represent a systematic rule (like logical inference) exists, it
doesn't mean a standard network will actually learn that rule from data using Gradient Descent.



How systematic is the human mind?

Fodor and Pylyshyn argued that the human cognitive architecture must be symbolic to account for the
systematicity of thought.

A large body of observed phenomena in humans, even in compositional and systematic domains like logical
reasoning and language use, are not systematic and might be better explained by alternative hypothesis:

e Domain-Specific Reasoning — Performance varies dramatically across familiar vs. unfamiliar domains
e Framing Effects — Responses driven by presentation format rather than identical structure

Implication: while a symbolic architecture may capture some aspects of cognition, it may fail to

account for many interesting and pervasive phenomena in human reasoning behavior.




Using what we know about humans to make LLMs more
systematic

1. Debiasing LLMs towards systematicity using representation engineering

Human beh_aworal bias — Internal representations > Design bias mitigation

LLM behavioral bias analysis intervention

2. Using meta-learning to induce systematicity in learning logical inferences

e A body of work has shown empirically that meta-learning can induce human-like systematic
generalization in Transformer NNs in linguistic tasks
e Can we use meta-learning to teach logical inferences in a systematic way to LLMs?



1. Debiasing towards systematicity
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Abstract

Both humans and large language models
(LLMs) exhibit content effects: biases in which
the plausibility of the semantic content of a rea-
soning problem influences judgments regarding
its logical validity. While this phenomenon in
humans is best explained by the dual-process
theory of reasoning, the mechanisms behind
content effects in LLMs remain unclear. In
this work, we address this issue by investigat-
ing how LLMs encode the concepts of validity
and plausibility within their internal represen-
tations. We show that both concepts are lin-
early represented and strongly aligned in rep-
resentational geometry, leading models to con-
flate plausibility with validity. Using steering
vectors, we demonstrate that plausibility vec-
tors can causally bias validity judgements, and
vice versa, and that the degree of alignment
between these two concepts predicts the magni-
tude of behavioral content effects across mod-
els. Finally, we construct debiasing vectors
that di le these p ducing con-
tent effects and improving reasoning accuracy.
Our findings advance understanding of how ab-
stract logical concepts are represented in LLMs
and highlight representational interventions as
a path toward more logical systems.

influential, positing two distinct modes of thought:
a fast, intuitive, heuristic-driven system (System 1),
and a slower, deliberative system responsible for
analytical reasoning (System 2; Evans, 2008; Kah-
neman, 2011). Neuroscientific studies have pro-
vided empirical support for this framework, high-
lighting different neural substrates associated with
these reasoning processes (Goel et al., 2000; Luo
et al., 2014). Recent work has found that LLMs
exhibit similar content effects in reasoning tasks
(Lampinen et al., 2024); however, the underlying
mechanisms driving these effects remain unknown.

In this work, we provide a representational ac-
count of why content effects may emerge in LLMs,
investigating how the abstract concepts of validity
and plausibility are encoded in their hidden repre-
sentation space. Specifically, we build upon the
linear representation hypothesis (Park et al., 2024),
which proposes that many high-level concepts are
encoded linearly within the latent space of LLMs.
This hypothesis has been supported by empirical
findings showing that concepts can often be cap-
tured by linear probes or manipulated with steer-
ing vectors (Liu et al., 2024; Rimsky et al., 2024;
Marks and Tegmark, 2024). We hypothesize that
content effects in LLMs may arise from the way




Content effects in reasoning

Human reasoning on logical problem is often non systematic. It is heavily influenced by the semantic
content of the problem at hand?.

All humans are mortal. All humans are plants.
ltalians are humans. ltalians are humans.
Therefore, Italians are mortal. Therefore, Italians are plants.
Human: VALID Human: INVALID

Definition: we call the first syllogism plausible since its conclusion is true in the actual world,

while the second is implausible since its conclusion is false in the actual world.

4Evans et. al. (1983). On the conflict between logic and belief in syllogistic reasoning. Memory & Cognition.



Content effects in Humans and LLMs
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Two experiments examined the effects of subjects’ beliefs on syllogistic
inference. The first experiment showed that beliefs biased the sponta-
neous conclusions that subjects drew for themselves. These effects were
more marked for indeterminate premises (which yield no non-trivial valid
conclusions) than for determinate premises (which yield valid conclu-
sions). There was also an effect of the nature of the beliefs: conclusions
that were false by definition had a bigger cffect on deductions than those
that were false as a matter of fact. The second experiment replicated the
finding for determinate syllogisms, using problems in moods in which the
status of the valid conclusion could not be altered by conversion of the
premises. Beliefs accordingly appear to affect the process of reasoning
rather than the interpretation of premises.
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Controlled dataset

Abstract problem

Categorical syllogisms

2 premises and 1 conclusion

64 possible combinations of premises

512 combinations of premises + conclusions

Assigned meaning

10 triples of hierarchically organized terms

e.g. “labradors”, “dogs”, “canines”
2 versions: plausible vs. implausible.

Input

Output

Input

Output

Plausible

Premises:

All labradors are dogs.
All dogs are canines.
Conclusion:

All labradors are canines

Valid

Implausible

7

Premises:
All dogs are cats.
All cats are felines.

Conclusion:
All dogs are felines

Valid




Behavioral performance

Model Prompt CE Acc
Qwen2.5-32B-Instruct  Zero-shot 0.348  81.62
CoT 0.095 94.61
Qwen3-14B Zero-shot 0.213  86.54
CoT 0.017 9847
Qwen2.5-7B-Instruct Zero-shot 0.418  75.68
CoT 0.147 89.66
Qwen2.5-14B-Instruct  Zero-shot 0.361 7747
CoT 0.072 94.75
Qwen3-4B Zero-shot 0.194  80.61
CoT 0.003 97.90
Qwen3-8B Zero-shot 0.218 85.97
CoT 0.014 96.30
Qwen3-32B Zero-shot  0.063 90.91
CoT 0.064 95.64
Gemma3-4B-it Zero-shot 0.213  81.02
CoT 0.104 89.29
Gemma3-12B-it Zero-shot 0.129 86.71
CoT -0.006 94.69
Gemma3-27B-it Zero-shot 0.182  87.29
CoT 0.021 9747

CE

valid valid invalid invalid
plausible Tr— implausible I implausible ™~ plausible

)

2

Content effects are still observed in all models
in the zero-shot setting (except Qwen3-32B)

With CoT, as model gets bigger, they become
more accurate and less biased, with some
models completing the task almost perfectly



Looking at the model internals

We looked at the internal representation of LLMs on two We take a single representation of
classification tasks: plausibility and validity as the
difference-in-means vector between the

e Classify syllogisms as valid or invalid positive and negative classes:

4 ) ® False
Premise: o Invalid
True
All labradors are dogs. All dogs are canines. o Valid
Conclusion:

All labradors are canines.

Is the syllogism valid or invalid? [VALID | INVALID]
\. J/

e C(Classify sentences as true or false

Sentence:
All labradors are canines.

Is the sentence true or false? [TRUE | FALSE]




What can we learn about behavioral content effects?

Content Effect
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Validity and plausibility vectors are highly
similar and their degree of similarity is
predictive of observed behavioral content
effects

0.017
57

We can control predictions about validity
using plausibility vectors, and we can control
prediction about plausibility using validity
vectors

Premises: All dogs are cats. All cats are felines.
Conclusion: All dogs are felines.
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Debiasing models towards systematicity

We compute a task difference vector that isolate those dimensions of validity that are disentangled
from plausibility:

! l l
Hy_p = Hy — Hp

Adding 1%_p to hidden states during validity classification should push the representation away from
plausibility-sensitive directions, thereby reducing the influence of content effects.

® False

e Invalid
True

e Valid

Model Metric Orig. Interv.
Acc 81.62 82.21

Qwen2.5-32B CE 0348 0.072

Qwerd-14p 2 862¢ 96J0

CE 0.213  0.043

We improve accuracy and reduce CE at the same time!




Summing up

e We used controlled data disentangling content vs. logical form to demonstrate that
content influences deductive reasoning in LLMs

e By investigating the internal representations we found that validity and plausibility
judgements are latently similar and that they can causally influence one another

e This analysis led us to design an intervention that makes models reason more
systematically



2. Learning logic through meta-learning

Teaching Small Language Models to Learn Logic through Meta-Learning
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Abstract

Large language models (LLMs) are increas-
ingly evaluated on reasoning tasks, yet their log-
ical abilities remain contested. To address this,
we study LLMs’ reasoning in a well-defined
fragment of logic: syllogistic reasoning. We
cast the problem as premise selection and con-
struct controlled datasets to isolate logical com-
petence. Beyond evaluation, an open challenge
is enabling LLMs to acquire abstract inference
patterns that generalize to novel structures. We
propose to apply few-shot meta-learning to this
domain, thereby encouraging models to extract
rules across tasks rather than memorize patterns

within tasks. Although meta-learning has been
little explored in the context of logic learnabil-
ity, our experiments show that it is effective:
small models (1.5B-7B) fine-tuned with meta-
learning demonstrate strong gains in general-
ization, with especially pronounced benefits in

low-data regimes. These meta-learned models

outperform GPT-40 and 03-mini on our syllo-
gistic reasoning task.

1 Introduction

With the advent of increasingly capable large lan-
guage models (LLMs), logical reasoning has be-
come a central domain for evaluating and compar-
ing these systems (Huang and Chang, 2023; Mon-
dorf and Plank, 2024; Liu et al., 2025). However,

Episode 7

Knowledge Base (X5)
knowledge base: Al x1 are x2, All x2 are x4, All x3 are x5,
Al x10 are x11, All x4 are x6, All x2 are x3, All x5 are x7,
Some x5 are not x1, Al x9 are x10, All x6 are x8, Al x8 are x9,
Some x11 are not x4

<STUDY> hypothesis: All x8 are x11

premises: All x8 are x9, All x9 are x10, All x10 are x11;
hypothesis: All xi are x3

premises: All x1 are x2, All x2 are 3; .

Query Hypothesis (z9*Y)
<QUERY> hypothesis: All x3 are x7

: 1
: i
: i
- Study Examples (S°*%") i
2 '

Figure 1: Overview of a ML episode. Given a set of
premises (the knowledge base, KB), a set of task demon-
strations (or Study Examples), and a Query Hypothesis
294" that is entailed from 8, models must generate
the minimal subset of premises, the Query Premises
YUY, from which 29" can be derived. During each
ML episode, by being trained on the Study Examples,
models learn to extract the abstract logical patterns. The
examples show how we frame syllogistic inferences as
a premise selection task. The dataset is built with pseud-
words, where here we have variables for space reasons.
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ity, our experiments show that it is effective:
small models (1.5B-7B) fine-tuned with meta-
learning demonstrate strong gains in general-
ization, with especially pronounced benefits in
low-data regimes. These meta-learned models
outperform GPT-40 and 03-mini on our syllo-
gistic reasoning task.

1 Introduction

With the advent of increasingly capable large lan-
guage models (LLMs), logical reasoning has be-
come a central domain for evaluating and compar-
ing these systems (Huang and Chang, 2023; Mon-
dorf and Plank, 2024; Liu et al., 2025). However,
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knowledge base: All x1 are x2, All x2 are x4, All x3 are x5,
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i 7.

Knowledge Base (K5) o
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£ <STUDY> hypothesis: All x8 are x11
premises: All x8 are x9, All x9 are x10, All x10.~
hypothesis: All x1 are x3
premises: All x1 are x2, All x2 are x3; ...

Query Hypothesis (z9*Y)
<QUERY> hypothesis: All x3 are x7

Figure 1: Overview of a ML episode. Given a set of
premises (the knowledge base, KB), a set of task demon-
strations (or Study Examples), and a Query Hypothesis
294" that is entailed from 8, models must generate
the minimal subset of premises, the Query Premises
YUY, from which 29" can be derived. During each
ML episode, by being trained on the Study Examples,
models learn to extract the abstract logical patterns. The
examples show how we frame syllogistic inferences as
a premise selection task. The dataset is built with pseud-
words, where here we have variables for space reasons.

2. Learning logic through meta-learning



Meta-learning or “learning to learn”

Meta-learning® methods aim to equip models with the capability of adapting or generalizing to new tasks and
new environments that have never been encountered at training time

Training Testing
P Train dataset #1: “cat-bird” | \

Supervised learning
e train dataset drawn
from a single data
distribution

Meta-learning
e models are trained
over a distribution of
datasets (tasks)

5T. Hospedales, A. Antoniou, P. Micaelli and A. Storkey, "Meta-Learning in Neural Networks: A Survey" in IEEE Transactions on Pattern Analysis
& Machine Intelligence



Meta-learning for systematic generalization

Lake and Baroni® (2023) propose to use few-shot meta-learning as a way to induce human-like systematic
generalization in neural networks inspired by how human can combine known concepts.

E.g. child learns how to ‘skip’ + knows the meaning of doing something n times
— understand how to ‘skip twice’ or ‘skip thrice’ due to their compositional skills.

Known concepts Novel combinations

Primitives Function What is skip twice?

Ak Ak

jump  skip jump twice

6Lake, B.M., Baroni, M. Human-like systematic generalization through a meta-learning neural network. Nature 623, 115-121 (2023)

* Images partially taken from: Irie, K., Lake, B.M. Overcoming classic challenges for artificial neural networks by providing incentives and
practice. Nat Mach Intell 7, 1602-1611 (2025).



Meta-learning for compositionality (MLC)

Artificial setting: input strings in a psedolanguage, e.g. “dax” — abstract symbols output, e.g. <RED>.

Models can learn how primitives, functions, and function compositions are mapped to symbols in the study
instructions, then they are given a new unseen set of test instructions and have to infer their outputs.

Study instructions Test instructions
Primitives Function 3 Function 1 Function compositions
dax @ wif @ lug kiki wif ® @ zup fep 88%  zup fep kiki lug [ ] 85%
g @ zup dax kikilug @ @ Function 2 wif kiki zup fep Q 85%
Function 1 . . zup blicketlug © @ ® 79%  |ug kiki wif blicket zup oovee 65%
Function compositions
lugfep @O ® lug fep Kiki wif Y dax blicketzup @ ® ®@ 88%  zup blicket wif kikidaxfep @ @ ® ® ® 70%
daxfep @ @ ® e : ; i
g wif kiki dax blicket lug ® ® ® ® Function 3 zup blicket zup kiki zup fep 75%
Funclign2 lug kiki wif fep YXY zupkikidax @ ® 86%
lug blicket wif @ ® @
wif blicket dax kikilug @ ® ® ® wif kiki zup ® 86%

wif blicket dax ® @ ®



Meta-learning and logic

The systematicity criterion from Fodor and Pylyshyn was directly inspired by properties of logic and formal
languages.

When we ask “Can LLMs learn to reason logically?” we are asking if by learning certain logical patterns they
will systematically generalize to structurally related ones
_)
Logic operates on formal structures, and superficially different expressions may share identical underlying
structure

- e.g. plausible syllogism == implausible syllogism

Meta-learning has demonstrated human-like systematic generalization

Open question: Can it transfer to the systematic generalization required for logical systems?




The premise selection task

In our experiments, we focus on the syllogistic
fragment of first-order logic: Task example using a transitive inference

— the simplest in the syllogistic logic

e Generalizes syllogisms to more than two
premises

e Includes seven types of minimal syllogistic f ( )
inferences Knowledge Base:
All a are b, All b are c, All c are
Task: d, Alld are e, All e are f.
e Knowledge base of atomic logical Input .
statements. %ﬁ%'
e Models have to identify the minimal L )
subset of premises that logically entail a
iven test hypothesis. Premises:
° P Ao Alla are b, All b are c.
Core aspect of deductive reasoning: determining \_ J

which known facts are necessary and sufficient
to justify a conclusion.

*We generate data with pseudowords in place of letters



Meta-learning setup

Learning methods (fine-tuning):
e Meta-learning: p(y eV | x eV, SSUPP KB) e Baseline: p(y eV | x ¢V KB)

Meta-learning episode

Knowledge Base:
Allaareb,Allbarec, Allcared, Alld are e, Alle are f, All fare g, Allg are h, AlLh are i, Alli are j, All j are k.

-

Study Examples:

Hypothesis: All d are f. Premises: All d are e, All e are f.
Hypothesis: All g are j. Premises: All g are h, AlLh are i, Alli are j.

Hypothesis: All a are c Premises: All a are b, All b are c.

The metal learning model can learn to abstract the logical pattern from the study examples and apply it
to the test hypothesis



Types of systematic generalization in logic (I)

e Core — applying known inference types to novel unseen sets of premises using the same
vocabulary as during training

Train Test

[AHBH;HDHE] [BHDH?HCHE]




Types of systematic generalization in logic (II)

e Lexical — applying known inference types to novel unseen sets of premises with an unseen OOD
vocabulary

Train Test

[AHBH;HDHE] [X123HXZZ4HX5:1HX671HX987]




Types of systematic generalization in logic (IIT)

e Recursive — applying known inference types to more complex (longer) sets of premises than seen
during training

Train Test

0.3 0K i




Types of systematic generalization in logic (IV)

e Compositional — applying known inference types to less complex (shorter) sets of premises than
seen during training

Train Test

N.03:,03 N03,03
f (1}




Results

e Core — applying known inference types to novel unseen sets of premises with known vocabulary

Model Method All e ML models are always
ML 93.11 +0.61 better than baseline but
sy Qwen-2.5 1.5B Basel; 85.56 + 1.24 .
= aseline_g 8550 % 1. not by a large margin
=
3 ML 96.16 + 0.44 .
aé Qwen-2.5 3B Baseline_s  93.03 % 1.15 e The advantage is bigger
L
ME 98.13 = 0.98 for smaller models
Qneld2IB g fine & 95762110 s
aseline—s 7076 = 1. e We compare with bigger
2 GPT4o ;Z‘r"gssflll(:)tt ?2-;8 prompted models for a
o : better understanding of
e .. Few-shot 88.45 the task difficult
A 03-mini Zero-shot 67.98 Y




Results

e Lexical — applying known inference types to novel sets of premises with an unseen OOD

vocabulary

Model Type Core Unseen Pseudowords Unseen Constants

Qwen-2.5 1.5B ML 93.11 £0.61 93.15+0.11 74.24 £1.07

e Baseline_g 85.56 £1.24 83.34 +£1.90 38.49 +1.06

Qwen-2.5 3B ML 96.16 + 0.44 96.09 £ 0.30 83.21 +1.19

’ Baseline_g 93.03 £1.15 91.49 £0.68 53.12+2.03

Qwen-2.5 7B ML 98.13 +£0.98 98.03+1.19 86.87 £0.31

' Baseline_g 95.76 £ 1.10 94.89 + 1.55 57.81 £2.17




Results

e Lexical — applying known inference types to novel sets of premises with an unseen OOD

vocabulary
y -
Model Type Core Unseen Pseudowords | Unseen Constants
Qwen-2.5 1.5B ML 93.11 £0.61 93.15+£0.11 74.24 £1.07
I Baseline_g 85.56 £1.24 83.34 +£1.90 38.49 +1.06
Qwen-2.5 3B ML 96.16 + 0.44 96.09 £ 0.30 83.21 +1.19
' Baseline_g 93.03 £1.15 91.49 £0.68 53.12+2.03
Qwen-2.5 7B ML 98.13 +£0.98 98.03+1.19 86.87 +0.31
WIS Baseline_g 95.76 £ 1.10 94.89 + 1.55 \ 57.81 £2.17

Unseen constants is the most OOD case, and ML is significantly more robust!



Results

e Recursive — applying known inference types to more complex (longer) sets of premises than seen
during training

e Compositional — applying known inference types to less complex (shorter) sets of premises than
seen during training

Model Method Recursive Compositional
Disaligned Aligned Disaligned Aligned
Owen-2.5 1.5B ML 7642+295 91.75+£1.10 7094 +2.27 71.13+1.83
B Baseline_g 63.53+1.16 63.53+1.16 56.67+1.22 56.67+1.22
Qwen-2.5 3B ML 87.61+197 9586+0.70 77.19+3.53 78.53+1.71
' Baseline_g 76.78+1.63 76.78+1.63 71.88+1.49 71.88+1.49
ML 90.03+1.09 96.84+£0.15 76.23+291 83.41+1.63
Qwen-2.5 7B :
Baseline_g 80.76 £2.65 80.76 £+2.65 71.08+1.55 71.08 +1.55

- ML models are always
better than baseline



Results

e Recursive — applying known inference types to more complex (longer) sets of premises than seen
during training

e Compositional — applying known inference types to less complex (shorter) sets of premises than
seen during training

Model Method / Recursive \ Compositional
Disaligned Aligned Disaligned Aligned
Qwen-2.5 1.5B ML 7642+295 91.75+1.10) 7094 +2.27 71.13+1.83
2198 Baseline_g| 63.53+1.16 63.53£1.16 | 56.67+1.22 56.67 +1.22
Qwen-2.5 3B ML 87.61 +1.97 9586+0.70 | 77.19+3.53 78.53+1.71
' Baseline_g| 76.78 +1.63 76.78 +1.63 | 71.88 +1.49 71.88 +1.49
Qwen-2.5 7B ML 90.03+1.09 96.84+0.15) 76.23 +291 83.41 +1.63
) Baseline_g \80.76 +2.65 80.76 + 2.65) 71.08+1.55 71.08 +£1.55

N

7

- ML models are always
better than baseline

Recursive case is easier
than the compositional one



Results

e Recursive — applying known inference types to more complex (longer) sets of premises than seen

during training

e Compositional — applying known inference types to less complex (shorter) sets of premises than

seen during training

Model Method Recur(ilve ~ Compositional
Disaligned Aligned Disaligned 4 Aligned )
Owen-2.5 1.5B ML 7642 +295) 91.75+£1.10 | 70.94 +£2.27 | 71.13 £1.83
B Baseline_g 63.53+1.16| 63.53 £1.16 | 56.67 £ 1.22 | 56.67 £ 1.22
Qwen-2.5 3B ML 87.61+1.97| 95.86+0.70 | 77.19 +£3.53 | 78.53 £ 1.71
' Baseline_g 76.78+1.63 | 76.78 +1.63 | 71.88 +1.49 | 71.88 +£1.49
ML 90.03+1.09) 96.84 £0.15 | 76.23 +2.91 | 83.41 £1.63
Qwen-2.5 7B :
Baseline_g 80.76 £2.65| 80.76 £+2.65 | 71.08 £ 1.55 | 71.08 + 1.55

- In the aligned case study examples
have same answer length as the query

ML models can learn from simpler or more

complex inference in-context



Summing up

e This work is foundational in the sense that it asks about the learnability of logic in a systematic
way in a neural system (no neuro-symbolic approach!)

e In core generalization, meaning that we test how learned inferences are applied to an unseen set
of premises using known vocabulary, baseline models almost approach meta-learning models

e Meta-learning is most effective when there is a large distributional shift (abstract lexicon,

recursive or compositional generalization) — this is what matters most for systematicity in logical
reasoning!

e Future work should investigate how to generalize this approach to more naturalistic settings



Conclusions

Take-home message: | believe that thinking about LLMs’ reasoning capabilities inspired by
what we know about human reasoning capabilities and limitations can guide approaches to
make LLMs more robust reasoners.

Approach 1: LLMs have similar reasoning biases to humans — we can engineer ways of
debiasing models to make them more systematic.

Approach 2: Human experts can think about logical problems in a systematic way — we

can investigate new learning methods, such as meta-learning, to mimic this capability in
LLMs.
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